Nucleus-encoded, plastid-targeted glyceraldehyde-3-phosphate dehydrogenase (GAPDH) indicates a single origin for chromalveolate plastids.

نویسندگان

  • James T Harper
  • Patrick J Keeling
چکیده

Plastids (the photosynthetic organelles of plants and algae) originated through endosymbiosis between a cyanobacterium and a eukaryote and subsequently spread to other eukaryotes by secondary endosymbioses between two eukaryotes. Mounting evidence favors a single origin for plastids of apicomplexans, cryptophytes, dinoflagellates, haptophytes, and heterokonts (together with their nonphotosynthetic relatives, termed chromalveolates), but so far, no single molecular marker has been described that supports this common origin. One piece of evidence comes from plastid-targeted glyceraldehyde-3-phosphate dehydrogenase (GAPDH), which originated by a gene duplication of the cytosolic form. However, no plastid GAPDH has been characterized from haptophytes, leaving an important piece of the puzzle missing. We have sequenced genes encoding cytosolic, mitochondrion-targeted, and plastid-targeted GAPDH proteins from a number of haptophytes and heterokonts and found haptophyte homologs that branch within a strongly supported clade of chromalveolate plastid-targeted genes, being more closely related to an apicomplexan homolog than was expected. The evolution of plastid-targeted GAPDH supports red algal ancestry of apicomplexan plastids and raises a number of questions about the importance of plastid loss and the possibility of cryptic plastids in nonphotosynthetic lineages such as ciliates.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nuclear-encoded, plastid-targeted genes suggest a single common origin for apicomplexan and dinoflagellate plastids.

The phylum Apicomplexa encompasses a large number of intracellular protozoan parasites, including the causative agents of malaria (Plasmodium), toxoplasmosis (Toxoplasma), and many other human and animal diseases. Apicomplexa have recently been found to contain a relic, nonphotosynthetic plastid that has attracted considerable interest as a possible target for therapeutics. This plastid is know...

متن کامل

Origin and distribution of Calvin cycle fructose and sedoheptulose bisphosphatases in plantae and complex algae: a single secondary origin of complex red plastids and subsequent propagation via tertiary endosymbioses.

Sedoheptulose-1,7-bisphosphatase (SBPase) and fructose-1,6-bisphosphatase (FBPase) are essential nuclear-encoded enzymes involved in land plant Calvin cycle and gluconeogenesis. In this study, we cloned seven SBP and seven FBP cDNAs/genes and established sequences from all lineages of photosynthetic eukaryotes, in order to investigate their origin and evolution. Our data are best explained by a...

متن کامل

A Hypothesis for the Evolution of Nuclear-Encoded, Plastid-Targeted Glyceraldehyde-3-Phosphate Dehydrogenase Genes in “Chromalveolate” Members

Eukaryotes bearing red alga-derived plastids--photosynthetic alveolates (dinoflagellates plus the apicomplexan Toxoplasma gondii plus the chromerid Chromera velia), photosynthetic stramenopiles, haptophytes, and cryptophytes--possess unique plastid-targeted glyceraldehyde-3-phosphate dehydrogenases (henceforth designated as "GapC1"). Pioneering phylogenetic studies have indicated a single origi...

متن کامل

Evidence for a chimeric nature of nuclear genomes: eubacterial origin of eukaryotic glyceraldehyde-3-phosphate dehydrogenase genes.

Higher plants process two distinct, nuclear gene-encoded glyceraldehyde-3-phosphate dehydrogenase (GAPDH) proteins, a Calvin-cycle enzyme active within chloroplasts and a glycolytic enzyme active within the cytosol. The gene for the chloroplast enzyme was previously suggested to be of endosymbiotic origin. Since the ancestors of plastids were related to cyanobacteria, we have studied GAPDH gene...

متن کامل

Functional Divergence and Convergent Evolution in the Plastid-Targeted Glyceraldehyde-3-Phosphate Dehydrogenases of Diverse Eukaryotic Algae

BACKGROUND Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a key enzyme of the glycolytic pathway, reversibly catalyzing the sixth step of glycolysis and concurrently reducing the coenzyme NAD(+) to NADH. In photosynthetic organisms a GAPDH paralog (Gap2 in Cyanobacteria, GapA in most photosynthetic eukaryotes) functions in the Calvin cycle, performing the reverse of the glycolytic reaction...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular biology and evolution

دوره 20 10  شماره 

صفحات  -

تاریخ انتشار 2003